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A versatile and efficient multi-block method is presented for the simulation of both

steady and unsteady flow, as well as aerodynamic design optimization of complete

aircraft configurations. The compressible Euler and Reynolds Averaged Navier-
Stokes (RANS) equations are discretized using a high resolution scheme on body-
fitted structured meshes. An efficient multigrid implicit scheme is implemented for

time-accurate flow calculations. Optimum aerodynamic shape design is achieved

at very low cost using an adjoint formulation. The method is implemented on
parallel computing systems using the MPI message passing interface standard to

ensure portability. The results demonstrate that, by combining highly efficient
algorithms with parallel computing, it is possible to perform detailed steady and

unsteady analysis as well as automatic design for complex configurations using the

present generation of parallel computers.

1 INTRODUCTION

The essential requirements for the industrial use of Computational Fluid Dy-

namics (CFD) are: (1) reliable solution accuracy, (2) acceptable computa-

tional cost, (3) complex geometry treatment and (4) rapid solution/design

turnaround.

Advances in both algorithms and computing hardware have been and will

be necessary to fulfill these requirements. During the eighties the development

of vector processors allowed the aeronautical engineer to analyze steady-state

flow problems. In the last three years parallel computing has begun the tran-

sition from research laboratories to industrial environments. Today, parallel

computing promises to enhance our flow prediction capability by allowing the

analysis of-time-dependent flow and by enabling the the automatic design op-

timization of complete aircraft." There remains the challenge of developing

application software which can take full advantage of the computing power of

these new architectures.



With these goals in mind, much effort by our research group has been

placed on the development of accurate and efficient methods for the calcula-

tion of steady and time dependent three-dimensional inviscid and viscous flows.

Not only are these analysis methods necessary purely for evaluating candidate

designs, but they also form the core of any CFD based design approach. The

pursuit of high accuracy has focused on the implementation of refined artificial

dissipation algorithms which provide the necessary upwind bias without cor-

rupting the physical phenomena at hand. Efficiency has been achieved through

the application of multigrid algorithms and the utilization of high performance

scalable parallel computing platforms.

For time-resolved flow calculations we have continued the development of

a very efficient multigrid implicit scheme originally presented by Jameson for

the compressible Euler equations 1. This method has proved effective for the

calculation of unsteady flows that might be associated with wing flutter 2,3, and

for the calculation of unsteady incompressible flows 4. It has also been applied

recently to simulate helicopter rotor flows 5. The method has the advantage

that it can be added as an option to a computer program which uses an explicit

multigrid scheme, allowing it to perform efficient calculations of both steady

and unsteady flows.

Three alternative approaches are available for the discretization of complex

configurations: (1) Cartesian meshes, (2) unstructured tetrahedral meshes, and

(3) body-fitted meshes. These basic techniques can be also combined into a

variety of hybrid mesh strategies. Each of these approaches has advantages

and disadvantages. In this work we use body-fitted hexahedral meshes. These

are particularly well suited for the treatment of viscous flow because they

readily allow the mesh to be refined in the region near the body and in the

direction normal to the surface. However, in order to use body-fitted meshes for

very complex configurations it generally proves necessary to use a multi-block

procedure 6,7, whereby multiple structured meshes are pieced together to form
the entire flow-field domain. From our perspective, the major advantage of a

multi-block approach is that it allows a straightforward extension to complex

geometries of a family of well validated computer codes originally written for

single-block meshes.

With currently available computers the turnaround for numerical simula-

tions is becoming so rapid that it is feasible to examine an extremely large
number of variations. However, it is not at all likely that interactive analysis

and a design approach involving significant user intervention will lead to truly

optimum designs. To examine a larger design space and realize substantial im-

provements in aerodynamic efficiency of new designs, CFD simulations need to
be combined with automatic search and optimization procedures. Thus, con-



currentlywith thedevelopmentof improvedanalysismethods,wehavemade
considerableeffortstowardthedevelopmentof automaticdesignmethodolo-
gies.Theproblemsof dragminimizationandinversedesigncanbothbesys-
tematicallytreatedwithinthemathematicaltheoryforthecontrolofsystems
governedby partialdifferentialequationss. Thecontroltheoryapproachto
optimalaerodynamicdesign,wherebytheboundaryshapebecomesthecon-
trol, andthe gradientof thecostfunctionwith respectto shapechangesis
obtainedbysolvingtheadjointproblemfor thegivensetof governingequa-
tions,wasfirst appliedtotransonicflowbyJameson9,1°.Theadjointapproach
hasbeenrecentlyimplementedin theinviscidversionof themulti-blockflow
solver11,12,13,thusallowing'fortheoptimizationof completeconfigurations.

Themathematicalmodelsgoverningcompressibleflowarediscussedin the
nextsection.Section3presentsthenumericalalgorithmsforflowsimulation.
Section5 presentstheresultsof somenumericalcalculationsfor steadyand
timeresolvedflowsoncomplexconfigurations.Section5.3discussesautomatic
designprocedureswhichcanbeusedtoproduceoptimumaerodynamicdesigns,
andpresentstheresultsfortheaerodynamicoptimizationofatypicaltransonic
businessjet configurationandasupersonictransportconfiguration.

2 MATHEMATICAL MODEL

The dynamics of compressible fluid flows are governed by the Navier-Stokes

equations. Let (Xl,X2,X3) be a Cartesian coordinate system. By adopting the

convention of indicial notation where a repeated index "i" implies summation

over i = 1 to 3, the three-dimensional Navier-Stokes equations take the form

Ow Ofi Of,,_
O--T+ Ox--_i= Oxi in T), (1)

where the state vector w, inviscid flux vector f, and viscous flux vector fv are

described by

pul

w= pu2 , fi =

pu3

pE
/ / 0}puiul + pSn aijSjl

puiu2 --k p512 , fvi = aq_j2 .

puiu3 + P5i3 crij 5j3

puiH ujcrij + k OT
Oxi

(2)

In these definitions, p is the density, Ul, u2, u3 are the Cartesian velocity com-

ponents, E is the total energy and _ij is the Kronecker delta function. The
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pressureisdeterminedbytheequationofstate

1 (uiui) },p= (_/- 1) p [.E- -_

and the stagnation enthalpy is given by

H=E+ p
P

where 7 is the ratio of the specific heats. The viscous stresses may be written
as

(o,,, o,,j Ouk
a_j = # \ Oz_ + Ozi ] + ),5_ Oxk ' (3)

where # and )_ are the first and second coefficients of viscosity. The coefficient

of thermal conductivity and the temperature are defined by

k 7# T = P
= P---_' (0'- 1)p" (4)

When using a discretization on a body-conforming structured mesh, it

is useful to consider a transformation to computational coordinates (_1,_2,_3)

defined by the metrics

La,'_J' J=det(K)' ,_ La_J"

The Navier-Stokes equations can then be rewritten in computational space as

0 (Jw) 0 (Fi - Fvl)
+ -0 in:D, (5)

Ot O_i

where the inviscid and viscous flux contributions are now defined with respect

to the computational cell faces by Fi = Sijfj and Fvi = Sij.fvj, and the

quantity Sit =- JK_ 1 is used to represent the projection of the _i cell face
along the xj axis. In obtaining equation (5) we have made use of the property
that

OSi-------iJ= 0, (6)

which represents the fact that the sum of the face areas over a closed volume

is zero, as can be readily verified by a direct examination of the metric terms.

When the mesh is non stationary, the calculation of the flux must take

into account the motion of the mesh. For a moving mesh, the conservation
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equationsareobtainedby computingthe convectiveflux basedon thefluid
velocityrelativeto themovingmesh.If themeshdeforms,thetimevariation
ofthecontrolvolumesmustalsobeaccountedfor.

Manycriticalphenomenaof fluid flow,suchasshockwavesandturbu-
lence,arehighlynonlinearandexhibitextremedisparitiesofscales.Whilethe
actualthicknessofashockwaveisoftheorderofthemeanfreepathofthegas
particles,ona macroscopicscaleits thicknessis virtuallyzero.In turbulent
flows,energy'istransferredfromlargescalemotionsto progressivelysmaller
eddiesuntil the scalebecomessosmallthat themotionisdissipatedbyvis-
cosity.Theratioof thelengthscaleof theglobalflowto that of thesmallest
persistingeddiesisoforderRe¼,whereReis theReynoldsnumber(typically
in therangeof 30millionfor a transportaircraft).In orderto resolvesuch
scalesin allthreespatialdirections,acomputationalgridwithorderRe_cells
wouldbe required.This is beyondthe rangeof anycurrentor foreseeable
computer.

Accuratemodelingof multi-scalephenomenahaspresentedtheCFDre-
searchcommunitywith a challengethat hasyetto be fully resolved.With
regardsto shockwaves,thedevelopmentof newhighresolutionschemeshas
resultedin veryaccuratemodelsfor shockcapturing.Tosimulateturbulent
flows,simplifiedmodelsmustbeconstructed.In thelimit of infiniteReynolds
number,thecontributionsdueto viscosityandheatconductionvanish.Thus
equation(5)maybereducedundersuchassumptionsto theEulerequations.
Thisinviscidmodelmaybesuitablefordescribingtheflowonmostaircraftat
cruiseconditions.However,viscouseffectsmustbeultimatelybetakeninto
accountsinceshockwavesandboundarylayersofteninteractwithadramatic
effectontheflowfield.

Whenviscouseffectsandturbulenceplaya salientrole,a commonap-
proachis to timeaveragethe Navier-Stokesequations.Thisproducesthe
ReynoldsAveragedNavier-Stokes(RANS)systemwhichgovernsthedynam-
icsof the meanflow. Theuseof theRANSequationsbringsviscousflow
calculationswithinthethresholdoffeasibilityonmoderncomputers.Unfortu-
nately,theaveragingprocessresultsinadditionaltermsandunknownswhich
requireaturbulencemodelforclosureofthesystemofequations.In thiswork
a verysimplealgebraicclosuremodel,originallydevelopedby Baldwinand
Lomax14,is used.Thismodelhasprovedsatisfactoryfor thecalculationof
attachedandslightlyseparatedwingflows15,andwith appropriatemodifi-
cationshasbeensuccessfullyappliedto vorticalflows16,17.Closuremodels
basedonthesolutionoftransportequationsfortheturbulentkineticenergyk
and the dissipation rate e, or for a pair of equivalent quantities 18,19,20,21,22,23,

will be implemented in our multi-block solver in the near future.



3 NUMERICAL METHOD

3.1 SPATIAL DISCRETIZATION

The discretization of the spatial operators is accomplished by using a cell-

center finite volume method. The flow domain is divided into a large number

of small subdomains, and the integral form of the conservation laws

O /z wdV + _ F dS 0Ot

is applied to each subdomain. Here F is the flux appearing in equation (5)

and dS is the directed surface element of the boundary/3 of the domain 7).

The use of the integral form has the advantage that no assumption of the

differentiability of the solution is implied, with the result that it remains a valid

statement for a subdomain containing a shock wave. In general the subdomains

could be arbitrary, but in this work we use the hexahedral cells of a body-

conforming curvilineax mesh. Discretizations of this type reduce to central

differences on a regular Cartesian grid, and in order to eliminate possible odd-

even decoupling modes allowed by the discretization some form of artificial

dissipation must be added. Moreover, when shock waves axe present, it is

necessary to upwind the discretization to provide a non-oscillatory capture of

discontinuities. In the present work this goal is achieved by using a Convective

Upstream Split Pressure (CUSP) approach, coupled with an Essential Local

Extremum Diminishing (ELED) formulation. Details on this technique and an

extensive validation of the scheme for both inviscid and viscous flow, can be
found in 24,25,26

To include the viscous terms of the Navier-Stokes equations into the spatial
discretization scheme it is necessary to approximate the velocity derivatives _

Ozj

which constitute the stress tensor aij. These derivatives may be evaluated by

applying Gauss' formula to a control volume V with the boundary S:

OU_dy
/v OXj = /suinj dS '

where nj is the outward normal. For a hexahedral cell this gives

Oui_ 1
Z ui nj S (7)

Ox_ V
faces

where _i is an estimate of the average of ui over the face, nj is the j - th

component of the normal, and S is the face area.



3.2 TIME STEPPING SCHEME FOR STEADY-STATE SOLUTIONS

If the space discretization procedure is implemented separately from the dis-

cretization in time, it leads to a set of coupled ordinary differential equations
which can be written in the form

dw

d-T+ R(w) = 0, (S)

where w is the vector of the flow variables at the mesh locations, and R(w) is

the vector of the residuals, consisting of the flux balances defined by the spa-

tim discretization together with the added dissipative terms. If the objective

is simply to reach the steady state and details of the transient solution are

immaterial, the time-stepping scheme may be designed solely to maximize the

rate of convergence.

Throughout this work we use a multistage explicit scheme, belonging to

the general class of Runge-Kutta schemes 27. Schemes of this type have proved

very effective for a wide variety of problems, and they have the advantage that

they can be applied equally easily on both structured and unstructured meshes
28,29,30,31,32.

If one reduces the linear scalar model problem corresponding to (8) to

an ordinary differential equation by substituting a Fourier mode _b = eipxj,

the resulting Fourier symbol has an imaginary part proportional to the wave

speed, and a negative real part proportional to the diffusion. Thus, the time

stepping scheme should have a stability region which contains a substantial

interval of the negative real axis, as well as an interval along the imaginary
axis. To achieve this we treat the convective and dissipative terms in a distinct

fashion. Thus the residual is split as

R(w) = Q(w) + D(w),

where Q(w) is the convective part and D(w) the dissipative part. Denote the

time level nAt by a superscript n. Then the multistage time stepping scheme
is formulated as

w(nq'l, O) : W n

w(nWl,k)

wn+l

°°,

__ w(n-I-1, m) ,



where the superscript k denotes the k-th stage, am = 1, and

Q(O) = Q (wn) , D (°) = D (w")

..o

V (k) : ZkV (w (nq-l'k)) + (1 -- Zk)D(k, 1).

The coefficients ak are chosen to maximize the stability interval along the

imaginary axis, and the coefficients 8k are chosen to increase the stability

interval along the negative real axis.
The coefficients of a five-stage scheme 33 which has been found to be

particularly effective are tabulated below.

O_1 =

O_2 :

Ol3 :

O_4 =

as=l

82=0

83 = 0.56 .

84=0

85 -- 0.44

(9)

3.3 ACCELERATION OF STEADY FLOW CALCULATIONS

Radical improvements in the rate of convergence to a steady-state solution can

be realized by the multigrid time-stepping technique. The concept of acceler-
ation by the introduction of multiple grids was first proposed by Fedorenko 34.

There is by now a fairly well-developed theory of multigrid methods for elliptic

equations based on treating the updating scheme as a smoothing operator on

each grid 35,36. This theory does not hold for hyperbolic systems. Nevertheless,
it seems that it ought to be possible to accelerate the evolution of a hyperbolic

system to a steady state by using large time steps on coarse grids so that dis-
turbances can be more rapidly expelled through the outer boundary. Various

multigrid time-stepping schemes designed to take advantage of this effect have

been proposed 37'38'39'40'41'42'43'44'45.

In our work we implement a multigrid scheme, originally developed by

Jameson 3s, which uses a sequence of coarser meshes generated by eliminating

alternate points in each coordinate direction. In order to give a precise de-

scription of the multigrid scheme, subscripts may be used to indicate the grid

level. Several transfer operations need to be defined. First the solution vector

on grid k must be initialized as

W(kO) = Tk,k_lWk_l,



where Wk-1 is the current value on grid k- 1, and Tk,k-1 is a transfer operator.

Next it is necessary to transfer a residual forcing function such that the solution

on grid k is driven by the residuals calculated on grid k- 1. This can be

accomplished by setting

:
where Q k,k- 1 is another transfer operator. Then Rk (Wk) is replaced by Rk (wk) +
Pk in the time- stepping scheme: Thus, the multistage scheme is reformulated

as

_-

The result w (rn) then provides the initial data for grid k + 1. Finally, the

accumulated correction on grid k has to be transferred back to grid k - 1

with the aid of an interpolation operator Ik-l,k. With properly optimized

coefficients, multistage time-stepping schemes can be very efficient drivers of

the multigrid process. A W-cycle of the type illustrated in Figure 1 proves to

be a particularly effective strategy for managing the work split between the
meshes. In a three-dimensional case the number of cells is reduced by a factor

of eight on each coarser grid. On examination of the figure, it can therefore be
seen that the work measured in units corresponding to a step on the fine grid

is of the order of

1 + 2/8+4/64+... < 4/3,

and consequently the very large effective time step of the complete cycle costs

only slightly more than a single time step in the fine grid.

3.4 A MULTIGRID IMPLICIT SCHEME FOR UNSTEADY FLOW

Time dependent calculations are needed for a number Of important applica-

tions, such as flutter analysis or the simulation of the flow past a helicopter

rotor, in which the stability limit of an explicit scheme forces the use of much

smaller time steps than would be needed for an accurate simulation. In this

situation a multigrid explicit scheme can be used in an inner iteration to drive
the solution of a fully implicit time discretization 1

Suppose that (8) is approximated as

• D_w n+l + R(w n+l) = 0.



la: 3 Levels.

lb: 4 Levels.

4 LevelCycle

lc: 5 Levels.

Figure 1: Multigrid W-cycle for managing the grid calculation. E, evaluate the change in

the flow for one step; T, transfer the data without updating the solution.

Here Dt is a k th order accurate backward difference operator of the form

1_1
Dt = _'_ q=1 q(A-)q'

where
A-W n+l _ W n-]-I __ W n.

Applied to the linear differential equation

dw

dt

the schemes with k -- 1, 2 are stable for all (_At in the left half plane (A-

stable). Dahlquist has shown that A-stable linear multi-step schemes are at
best second order accurate 46. Gear however, has shown that the schemes with
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k < 6 are stiffly stable 47, and one of the higher order schemes may offer a better

compromise between accuracy and stability, depending on the application.

Equation (8) is now treatedas a modified steady state problem to be solved

by a multigrid scheme using variable local time steps in a fictitious time t*.

For example, in the case k = 2 one solves

Ow

or---;= R*(w),

where

3 2__wn 1 wn_ 1
R*(w) = + + At - '

and the last two terms are treated as fixed source terms. The first term shifts

the Fourier symbol of the equivalent model problem to the left in the complex

plane. While this promotes stability, it may also require a limit to be imposed

on the magnitude of the local time step At* relative to that of the implicit
time step At. This limitation may be relieved by a point-implicit modification

of the multi-stage scheme 4s. In the case of problems with moving boundaries

the equations must be modified to allow for movement and deformation of the
mesh.

3.5 DYNAMIC REMESHING AND MESH MOVEMENT

In an Eulerian reference frame both the aerodynamic shape design problem

and the unsteady aeroelastic problem require a method by which the compu-

tational meshes may be efficiently and robustly regenerated. Either problem
may demand many hundreds of independent meshes on which the solution is
to be calculated.

Traditional structured mesh generation approaches, such as those that

solve elliptic or hyperbolic sets of partial differential equations, would be im-

practical in this setting. These iterative approaches are computationally ex-

pensive, and their repeated use for dynamic remeshing would be prohibitively

expensive. A second problem presented by the requirement of treating complex

geometries is that truly automated methods of generating arbitrary multi-block

meshes do not presently exist. In this paper we pursue the commonly used

alternative of analytic mesh perturbations. In this approach, a high quality

surface and volume mesh is first generated about the initial geometry by any

available procedure prior to the start of the time dependent analysis or the
optimal design. This initial mesh becomes the basis for all subsequent meshes

which are developed by analytic perturbations. In the case where only one
surface, such as the wing, is perturbed during the computation, the method

reduces to a very simple algebraic mesh perturbation algorithm. New meshes

11



arecreatedbymovingall themeshpointsonanindexlineprojectingfrom
thesurfaceby anamountwhichis attenuatedasthearclengthfromthesur-
faceincreases.If theouterboundaryof thegriddomainisheldconstant,the
modificationto thegridhastheform

= + s - , (lo)

where xi represents the volume grid points, xsl represents the surface grid
points, and S represents the arc length along the radial mesh line measured
from the outer domain and normalized so that S = 1 at the inner surface and

0 at the far field.

In order to use analytic mesh perturbations for the treatment of the more

general problem where multiple faces of a given block may be simultaneously

deformed, equation (10) had to be modified in a way that resembles trans-
finite interpolation (TFI) 49. Unlike TFI, where there is no prior knowledge

of the interior mesh, the perturbation algorithm developed here makes use

of the relative interior point distributions in the initial mesh. In our general

implementation of the perturbation method, a three-stage procedure is used.
For each block in the multi-block mesh the first stage shifts the internal mesh

points to produce an interim block that is determined entirely by the new lo-
cations of the 8 corner points defining the block. The second stage corrects

the perturbations resulting from the first stage by determining the distance

that each of the 12 edges resulting from the first stage needs to be moved to
attain the desired edge locations. Finally, with both corner and edge point mo-

tion accounted for, the third stage corrects the internal points for the relative
motion of the six faces.

Since our current flow solver and design algorithm assume a point-to-point

match between blocks, each block may be independently perturbed by the

algorithm, provided that perturbed surfaces are treated continuously across
block boundaries. The entire method of creating a new mesh is given by the

following algorithm.

1. All faces that are directly affected by the moving surfaces (active faces)

are explicitly perturbed.

2. All edges that touch an active face, either in the same block or in an

adjacent block, are implicitly perturbed by (10).

3. All inactive faces that either include an implicitly perturbed edge or
abut to an active face are implicitly perturbed by a quasi-3D form of the

general algorithm.
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4. Thethree-stageschemeoutlinedaboveis thenusedoneachblockthat
hasoneormoreexplicitlyor implicitlyperturbedfacesto determinethe
adjustedinteriorpoints.

Notethat muchof the mesh,especiallyawayfromthesurfaces,will not re-
quiremeshperturbationsandthusmayremainfixedthroughouttheentire
unsteadyanalysisor designprocess.Closeto thesurfaces,manyblockswill
eithercontainanactivefaceor toucha blockwhichcontainsanactiveface,
eitherby anedgeor by a corner.Asthe designvariationsaffecttheactive
faces,the aboveschemeensuresthat theentiremeshwill remainattached
alongblockboundaries.Addedcomplexityis neededto accomplishstep(2)
sincetheconnectivityofthevariousedgesandcornersmustbespecifiedsome-
how.Currently,pointersto andfromasetofmasteredgesandmastercorners
aredeterminedasa preprocessingstep.Duringthecalculation,themotionof
anyedgesandcornersaretransferredto thesemasteredgesandcornersfrom
whichall connectededgesandcornerscanbeupdated.

4 DOMAIN DECOMPOSITION AND PARALLEL IMPLEMEN-

TATION

The multi-block method is parallelized using a domain decomposition model,

a SPMD (Single Program Multiple Data) strategy, and the MPI (Message
Passing Interface) Library for message passing 5°. The choice of MPI was

determined by the requirement that the resulting code be portable to different

parallel computing platforms as well as to homogeneous and heterogeneous
networks of workstations.

Communication between subdomains is performed through halo cells sur-

rounding each subdomaln boundary. Since both the convective and the viscous
fluxes are calculated at the cell faces (boundaries of the control volumes), all

six neighboring cells are necessary, thus requiring the existence of a single level
halo for each processor in the parallel calculation. The calculation of the dis-

sipative fluxes requires values from the twelve neighboring cells (two adjacent

to each face). For each cell within a processor, Figure 2 shows which neighbor-

ing cells are required for the calculation of convective, viscous, and dissipative
fluxes. For each processor, some of these cells will lie directly next to an inter-

processor boundary, in which case the values of the flow variables residing in a

different processor will be necessary to calculate the convective and dissipative
fluxes.

The actual communication routines used are all of the asynchronous (or

non-blocking) type. In the current implementation of the program, each pro-

cessor must send and receive messages to and from at most 6 neighboring

13
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Figure 2:Convective and Dissipative Discretization Stencils.

processors (left and right neighbors in each of the three coordinate directions).
The communication is scheduled such that at every instant in time, pairs of

processors are sending/receiving to/from one another in order to minimize
contention in the communication schedule.

The partitioning of the mesh is performed by allocating complete blocks to

each processor. The underlying assumption is the fact that there will always
be more blocks than processors available. This approach has the advantage

that the number of multigrid levels that can be used in the parallel imple-

mentation of the code is always the same as in the serial version. Moreover,

the number of processors in the calculation can now be any integer number,

since no restrictions are imposed by the partitioning in any of the coordinate

directions within each block.

The only drawback of this approach is the loss of the exact load balanc-

ing that can be achieved by partitioning single-block meshes along the three
coordinate directions. The various blocks in the calculation can have different

sizes, and consequently, it is very likely that each processor will be assigned a
different total number of cells in the calculation. This, in turn, will imply that

some of the processors will be waiting until the processor with the largest num-

ber of cells has completed its work and parallel performance will suffer. The

approach that we have followed to solve the load balancing problem is to assign
to each processor, in a pre-processing step, a certain number of blocks such
that the total number of cells is as close as possible to the exact share for per-

14



I ProcessorNumber Percentageof Load
1 12.50000
2 12.50000
3 12.98701
4 12.01298
5 12.98701
6 12.01298
7 12.50000
8 12.50000

Table1:CalculatedLoadDistributiononan8ProcessorCalculation

fectloadbalancing.Forexample,oneofthemeshesforthewing/body/nacelle
configurationof a smallbusinessjet wasmadeupof 72structuredblocksof
differentsizes.When8processorsareused,theloadbalanceobtainedcanbe
seeninTable1to bequitecloseto exact.Oneshouldnotethatloadbalancing
basedonthetotalnumberofcellsin eachprocessorisonlyanapproximation
to theoptimalsolutionoftheproblem.Othervariablessuchasthenumberof
blocks,thesizeofeachblock,andthesizeofthebuffersto becommunicated
playanimportantrolein properloadbalancing.

Parallel Efficiency

For problems with a low task granularity (ratio of the number of bytes received

by a processor to the number of floating point operations it performs), large

parallel efficiencies can be obtained. Unfortunately, convergence acceleration

techniques developed in the 1980s base their success on global communication

in the computational domain. Thus, current multigrid and implicit residual

smoothing techniques are bound to hinder parallel performance for problems
with smaller mesh sizes. For larger meshes used in viscous turbulent flow

calculations on complete configurations, the granularity becomes low enough,

and the parallel performance is quite high.
Several techniques can be applied to reduce the communication cost of

the multigrid technique. Among these, one can consider completely eliminat-

ing communication at the coarser levels of the multigrid cycle (thus allowing

each processor to operate independently with the multigrid forcing terms at

interprocessor boundaries derived from the flow variables in the finest mesh).

Alternatively, one can also avoid sending messages at the end of every stage
in the Runge-Kutta time stepping. Past experience has shown 51 that these

savings in communication cost are usually offset by a degradation in the conver-
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gencerateoftheoverallalgorithm.Therefore,in thepresentimplementationit
wasdecidedto allowmessagepassinganytimetheflowvariableswerealtered.

5 COMPUTATIONS OFSTEADY AND TIME-DEPENDENT FLOWS

Theflexibilityandtheefficiencyofourmulti-blocksolverisdemonstratedby
theresultsincludedin thissection.Bothsteadyandunsteadyflowproblems
arepresented.

5.1 STEADY EULER AND RANS ANALYSIS

In the first test case the steady inviscid solution capability is demonstrated on a

typical business jet configuration depicted in Figure 3. The same configuration

will serve as a test for a Viscous analysis case and an inviscid design case. The

mesh for the inviscid analysis contains 240 blocks and 4.2 million cells including

halos. The geometry modeled consists of a wing-body-nacelle-pylon. The

empennage was left out to simplify the initial grid generation. The nacelles

are modeled as flow-through. The layout of the mesh topology is that of a

general C-O. The mesh fidelity is such that a quick switch to Navier-Stokes

calculations is possible by changing the spacing normal to the surface. The

wing sweep is 20 degrees. Thus, with the thick airfoil sections featured in

the design, it remains a challenge to contain wave drag at the moderate Mach

numbers of its design point (M = 0.75 - 0.82). Figure 3 shows the configuration

colored by calculated iso-Cp levels at M = 0.82 and _ -- 1.0 degrees. Although

they are not presented here, correlations of the wing pressure distributions have
been obtained with experimental data. The comparisons with tunnel data are

excellent except for a 5% difference in the location of the upper surface shock
due to the omission of viscous effects. Using four multigrid levels, the solution

presented in Figure 3 was obtained in 150 cycles and required 30 minutes of

wall clock time using 32 processors of an IBM SP2 machine. The convergence
criterion for this calculation was a reduction in the average residual of 5.2

orders.

The second example of inviscid analysis is carried out for a supersonic

transport configuration. This configuration will serve also as an inviscid de-

sign case. Here a possible supersonic transport configuration was sized to

accommodate 300 passengers with a gross take-off weight of 750,000 lbs. The

supersonic cruise point is M = 2.2 with a CL of 0.105. As can be seen in Figure

4, the planform has a break in the leading edge sweep. The inboard leading

edge sweep is 68.5 degrees while the outboard is 49.5 degrees. Since the Mach
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angleat M = 2.2 is 63 degrees it is clear that some leading edge bluntness may
be used inboard without a significant wave drag penalty. Airfoils with blunt

leading edges were selected that range from 4% thick at the root to 2.5% thick

at the leading edge break point. The symmetric initial airfoils were chosen

with the purpose of accommodating spars at roughly 10% and 80% chord over

the span up to the leading edge break. Outboard of the leading edge break

where the wing sweep is ahead of the Mach cone, a sharp leading edge was
used to avoid undue wave drag. The four-engine configuration features ax-

isymmetric nacelles tucked close to the wing lower surface. This layout favors

reduced wave drag by minimizing the exposed diverter area. However, it may

be problematic because of the channel flows occurring in the juncture region
of the diverter, wing, and nacelle at the wing trailing edge. The leading edge

heights of the diverters are determined by the local boundary layer displace-
ment thickness such that entrainment of boundary layer flow into the engines

is avoided. Since the distances from the wing leading edge to the diverter

leading edge are different for the two nacelles, this causes a corresponding di-

verter height difference. The computational mesh on which the analysis is run

has 180 blocks and 1.5 million mesh cells. Again the nacelles are modeled as

flow-through and a general C-O mesh topology is followed. Figure 4 shows the

configuration colored by calculated iso-Cp levels at M = 2.2 and CL = 0.105.

Using four multigrid levels the solution was obtained in 100 cycles and required
16 minutes of wall clock time with 16 processors of an IBM SP2 machine. The

convergence level obtained for this calculation was a reduction in the average
residual of 3.8 orders.

The third analysis example corresponds to a Steady Navier-Stokes solution

for the transonic business jet configuration used in the first test case. This

time the complete configuration is modeled, including the wing, body, nacelle,

pylon, vertical tail, and horizontal tail. The mesh contains 240 blocks with

5.8 million cells including halos. It has the same general C-O topology with

flow-through nacelles. For this calculation only the wing is treated as a no-slip

boundary condition with the remaining solid surfaces modeled as inviscid type.

The wall normal spacing of the first cell was such that at the flight conditions

a y+ = 1 would be attained at the half span trailing edge assuming a flat

plate turbulent boundary layer. At the flight conditions (M = 0.80 and an

altitude of 40,000 ft) the Reynolds number is 1.45 million/ft. A Baldwin-Lomax
turbulence model is used in the demonstration and should be adequate for this

attached flow condition. Figure 5 shows the iso-Cp solution at M = 0.82,

Re = 1.45 million/ft and CL = 0.36. As will be shown later in the design

studies, this condition is above the design point for the configuration both in
terms of Mach number and CL. Figure 6 shows comparisons of the wing Cp
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distributionbetweenthis Navier-Stokessolutionandthoseobtainedby the
Eulercalculationpresentedin thefirst testcaseat thesameflightconditions
(M anda). Note that the shock position has moved forward for the Navier-

Stokes calculations; and though it is not presented here, this agrees well with

experimental data. These results were obtained in 300 four-level multigrid

cycles using 32 processors on an IBM SP2. The reduction in the average

residual was 4.3 orders and the elapsed wall time was 3.25 hours.

5.2 TIME-RESOLVED HELICOPTER ROTOR

Rigid Rotor-Navier-Stokes Hover

A Navier-Stokes calculation was performed on the Caradonna rotor 52 at a

collective pitch of 8 degrees and a tip Mach number of 0.877. Shock-free cases

including viscous effects produced results that were very similar to the inviscid

and experimental results and are not reproduced here. The grid used in this

case was an H-H grid with 256 × 64 × 64 cells, with 128 cells on the surface of
the airfoil in the chordwise direction and 48 cells in the spanwise direction. A

Baldwin-Lomax turbulence model was used for a tip chord Reynolds number
of 3,930,000. Approximately 24 cells lie in the boundary layer of the rotor.

This level of resolution has been shown to be satisfactory for these types of

calculations when using a CUSP scheme 53,54,3. Figure 7 shows experimen-

tal and numerical pressure coefficient distributions at different outboard radial
locations of the blade. The most likely causes for this disagreement with exper-

imental measurements are the inadequacy of the Baldwin-Lomax turbulence

model for flow cases which include shock-boundary layer interaction such as

the present case, and the differences between transition locations in thecompu-
tation and experiment. Transition in this calculation was fixed at the leading

edge of the blade, which may not correspond to the experimental location of

transition (which was not specified in the experimental report). To reach an
adequate level of convergence (five orders of magnitude reduction in the RMS

residual of density), this calculation required 6.5 hours on 16 processors of an
IBM SP-2. The computation was perfectly load balanced with 64 blocks of
32 × 32 × 16 cells.

Rigid Rotor-Euler Forward Flight

A series of time dependent calculations for the Caradonna rotor were also

carried out to establish the feasibility of forward flight simulations. In this

case, the problem is no longer symmetric and the full two bladed rotor (24

blocks) must be simulated. The freestream conditions are set appropriately,
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whiletherotorandattachedgridarerotatedat thecorrectangularvelocity.
Thecollectivepitchof thebladewassetto 8 degrees.Thetip Machnumber
forthis flightconditionwas0.628whiletheadvanceratiowas0.30.

Threecalculationsusing36,72and144timestepsperrevolution(corre-
spondingto 10,5 and2.5degreesperstep)werecarriedout witha second
orderaccuratediscretizationfor thetimederivative,andarefinementstudy
wasperformedto verifythetimeaccuracy.Between20and25multigridcycles
wereusedat eachtimestepin orderto convergethepseudo-timeiterationto
anacceptablelevel.Theresultsarepresentedin Figure8 whichshowsthe
lift coefficientof therotorasafunctionof theazimuthalangle.Aswouldbe
expected,theseriesoflift coefficienthistoriesconvergesasthenumberoftime
stepsperrevolutionis increased.Approximately4-6revolutionswereneeded
to attainaperiodicsolutionforthe lift coefficient.Forthe144timestepper
revolutioncase,approximately4hourson12processorsof anIBM SP-2were
usedfor eachfull revolution.Add_ionalcalculationsnotpresentedhereindi-
catethat, at loweradvanceratios,morerevolutionsofthebladeareneededin
orderto achievea periodicsolution.Whentheadvanceratio is lowered,the
wakeis notconvectedasfar awayfromthebladeandthereforehasa larger
effectonthebladeloading.

Aeroelastic Rotor-Euler Forward Flight

A preliminary aeroelastic calculation was attempted using the five bladed rotor

at a tip Mach number of 0.628 and an advance ratio of 0.30. The same mesh

used in the hover cases was repeated at 72 degree intervals resulting in a total
mesh size of 5 x 96 × 32 × 56 = 860, 160 cells with 5 × 18 = 90 blocks. Aeroelastic

deflections were computed for all blades, but only modal deflections for one of

these blades are reported. A simple structural deflection model was coupled

to the flow equations to account for the aeroelastic properties of the blade.

A total number of 36 time steps per revolution was used allowing for the

motion of the blades at 10 degree intervals. Within each time step, 50 multi-

grid cycles were used to fully converge the coupled fluid/aeroelastic system.
Information between equation systems was exchanged after every 5 multigrid

cycles of the flow solver.

Figure 9 shows the time evolution of three of the bending modes during
the last computed rotor revolution. For the first mode of vibration, a neg-

ative modal coordinate represents an upward tip displacement. As one can

see, after 6 revolutions the modal coordinates have nearly reached a periodic

• state. In particular, it is interesting to note that the maximum modal deflec-

tions are achieved on the retreating side, which is not unreasonable given the
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assumptionsmadein themodelingof the structural properties of the blades.

The problem was solved using 30 processors of an IBM SP-2 system (6 pro-

cessors per blade), achieving almost perfect load balance (4% variation between

processors). Nine hours were required to compute a total of 6 revolutions.

Further verification using more realistic structural models and experimen-
tal data is needed. Nevertheless, it is important to point out that this calcula-

tion indicates that forward flight rotor calculations including aeroelastic effects

are indeed feasible on current high performance parallel computing platforms.

5.3 THE ADJOINT APPROACH TO OPTIMAL DESIGN

5.4, GENERAL FORMULATION

While a detailed derivation of the adjoint formulation for optimal design using

either the Euler or the Navier-Stokes equations goes well beyond the scope

of this paper, it is helpful to summarize the general description of the adjoint

approach which has been thoroughly documented in references 9'1°'55.

The progress of the design procedure is measured in terms of a cost function

I which could be, for example, the drag coefficient or the lift to drag ratio. For

flow about an aircraft configuration, the aerodynamic properties which define
the cost function are functions of the flow-field variables (w) and the physical

location of the boundary _'. Thus the cost function may be written as

I = I (w,s),

while its first variation is given by

[oI I roi l
aI = L-b-J_J aw + L_-I _s. (11)

Using control theory, the governing equations of the flow-field are introduced

as a constraint in such a way that the final expression for the gradient does

not require multiple flow solutions. This corresponds to eliminating (fw from

(11).
Suppose that the governing equation R which expresses the dependence of

w and _" within the flow-field domain D is written as

R (w, jr)= 0. (12)

Then its corresponding first variation can also be written

_R= _w _w+ _-_ _.T=o, (13)
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sinceR = 0 must be satisfied at any point in the design space. Next, intro-

ducing a Lagrange multiplier ¢, we have after combining (11) and (13),

_I = oIT_w oIT
Ow + '0_ &r

+

+ t (14)

Choosing ¢ to satisfy the adjoint equation

OR] T 0/

_] ¢ = b_'

the first term is eliminated, and we find that

(15)

6i = G67, (16)

where

oIT cT[ OR]6- 07 -_ "

The advantage is that (16) is independent of _w, with the result that the

gradient of I with respect to an arbitrary number of design variables can be
determined without the need for additional flow-field evaluations. In the case

that (12) is a partial differential equation, the adjoint equation (15) is also

a partial differential equation and determination of the appropriate boundary
conditions requires careful mathematical treatment.

The computational cost of a single design cycle is roughly equivalent to the

cost of two flow solutions since the the adjoint problem has similar complexity

to that of the flow solution problem. When the number of design variables

becomes large, the computational efficiency of the control theory approach

over the traditional approach, which requires direct evaluation of the gradients

by individually varying each design variable and recomputing the flow-field,
becomes compelling.

Once equation (13) is established, an improvement can be made with a
shape change

69r = -)_
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whereAis positive,andsmallenoughthat thefirst variationis anaccurate
estimateof_I. Then

Aftermakingsuchamodification,thegradientcanberecalculatedandthepro-
cessrepeatedto followapathofsteepestdescentuntilaminimumisreached.
In orderto avoidviolatingconstraints,suchasa minimumacceptablewing
thickness,thegradientmaybeprojectedintoanallowablesubspacewithin
whichtheconstraintsaresatisfied.In this way,procedurescanbedevised
whichmustnecessarilyconvergeat leastto a localminimum.

Theadjointsystemissolvedonthemulti-blockdomaininafashioniden-
ticalto that usedfor theflowsolution.Thusliketheflowsolver,theadjoint
solverusesanexplicitmultistageRunge-Kutta-likealgorithmacceleratedby
residualsmoothingandmultigrid. Inter-blockcommunicationis againhan-
dledthrougha doublehalowhichallowsfor thefull transferof information
acrossboundariesexceptfor thestencilof supportfor the implicit residual
smoothing.In thetestcasesto bepresentedin thenextsectionNPSOL56,
aSequentialQuadraticProgramming(SQP)optimizationalgorithmwasused
to drivethedesignprocess.References9,10,11,12,57,58,59,5_givecompletetreat-
mentsof thedetailsof howtheadjointequationsarederivedspecificallyfor
theEulerandNavier-Stokesequationsaswellasdetailsregardinghowthe
finalgradienttermsareevaluated.Thereferencesarealsousefulfor anun-
derstandingof theoptionsthat areavailablein linkinganadjointmethodto
variouspopularoptimizationalgorithms.Finally,reference60showssomeof
thepossiblediscretizationschemesthatcanbeusedfortheadjointequations.

5.5 EXAMPLES OF DESIGN OPTIMIZATION

Numerical results will be presented for two classes of problems to demonstrate

the versatility of our method. Reference 5s gives a treatment of the reliability of

the flow solver as well as the ability of the adjoint method to provide accurate

gradients very efficiently. The parallel speed-ups attained by the method have

been demonstrated in reference 13, and are generally better than 90%.

Transonic Constrained Aircraft Design

As a first demonstration of the multi-block solver in the design mode, the

transonic business jet configuration analyzed earlier is considered. In this

Euler-based design case the initial multi-block mesh about the business jet

wing, body, and nacelle has 72 blocks and 750,000 cells. Underlying geometry
entities that are used to drive design changes include the wing with six defining

22



stationsandthefuselage.Theinitial configurationwasdesignedfor M = 0.8
and CL = 0.3.

In the first design case (Test Case 1), a single-point constrained design is
attempted in which the design Mach number is pushed from 0.80 to 0.82. The

objective is to minimize configuration pressure drag at a fixed lift coefficient of

0.3 by modifying the wing shape. Eighteen Hicks-Henne design variables are
chosen for five of the six defining sections for a total of 90 design variables.

(The section at the symmetry plane is not being modified.) Spar thickness con-
straints are also enforced at each defining station at x/c = 0.2 and x/c = 0.8.

Maximum thickness is forced to be preserved at x/c = 0.4 for all six defining

sections. Each section is also constrained to have the thickness preserved at

x/c = 0.95 to ensure an adequate included angle at the trailing edge. A total

of 30 linear geometric constraints are imposed on the configuration. Figure

10 shows overlays of the Cp distributions at four stations along the wing for

the initial configuration and final design after 5 NPSOL iterations. It is seen
that the flnal result has reached a near-shock-free condition over much of the

outboard wing panel. The drop in configuration pressure drag for this case

was 22.5%. Noting that most of this drag reduction came from a decrease in

wing wave drag implies that further improvements maybe possible through

the reshaping of other components.

Before proceeding to the next test case, it should be noted that this busi-

ness jet design example is only representative of the potential for automated

design, and is not intended to provide a design for actual construction. In fact,

only 5 NPSOL steps were taken when considerably more steps could have im-

proved the design further. More importantly, for the case of transonic design,

the inclusion of viscous effects may prove to have an important impact on the

optimized shape. In our future transonic studies, the viscous flow solver will
be used.

Supersonic Constrained Aircraft Design

In the case of supersonic design, it is conjectured that as long as turbulent flow

is assumed over the entire configuration, the inviscid Euler equations suffice for

aerodynamic design. The pressure drag does not seem to be greatly affected

by the inclusion of viscous effects, and a flat plate skin friction estimate of

viscous drag is often a good approximation.

Here the configuration which was considered for the Euler analysis case

presented in section 5.1 will be revisited. The mesh contains 180 blocks and

1.5 million mesh points, while the underlying geometry entities used to drive

the design changes define the wing with 16 sectional cuts and the body with
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200sectionalcuts. In this case,sincewehopeto optimizetheshapeof the
wing,caremustbetakentoensurethatthenacellesremainproperlyattached
with thediverterheightsmaintained.Toaccomplishthiswithoutintroducing
additionalgeometriccomplexity,the portionsof the nacellesanddiverters
that areactuallybelowthewingplanformoutlinetaketheirassociatedsurface
meshpointmotionfromtheirprojectedlocationsonthelowerparametricwing
surfaces.

Theobjectiveofthedesignis to reducethedragat asingledesignpoint
(M -- 2.2,CL = 0.105) by modifying the wing shape. Just as in the transonic
cases, 18 design variables of the Hicks-Henne type are chosen for a given wing

defining section. However, instead of applying them to all 16 sections, they are

applied to 8 of the sections and then lofted linearly to the neighboring sections.

Spar constraints are imposed for all wing defining sections at x/c = 0.05 and

x/c = 0.8. An additional minimum thickness constraint is specified along the
span at x/c = 0.5. A final thickness constraint is enforced at x/c = 0.95 to

ensure a reasonable trailing edge included angle. An iso-Cp representation of

the initial and final designs is depicted in Figure 11 for both the upper and
lower surfaces.

It should be noted that the strong oblique shock evident near the leading

edge of the upper surface on the initial configuration has been largely elimi-
nated after 5 NPSOL design iterations. It is also seen that the upper surface

pressure distribution in the vicinity of the nacelles has formed an unexpected

pattern. These upper surface pressure patterns are conjectured to be the re-
sult of sculpting of the lower surface near the nacelles, which affects the upper

surface shape through the thickness constraints. For the lower surface, the

leading edge has developed a suction region while the shocks and expansions
around the nacelles have been somewhat reduced. Figure 12 shows the pres-

sure coefficients and (scaled) airfoil sections for four sectional cuts along the

wing. These plots further demonstrate the removal of the oblique shock on the
upper surface, and the addition of a suction region on the leading edge of the
lower surface. The airfoil sections have been scaled by a factor of 2 so that

shape changes may be seen more easily. Most notably, the section at 38.7%

span has had the lower surface drastically modified such that a large region of
the aft airfoil has a forward-facing portion near where the pressure spike from

the nacelle shock impinges on the surface. The final overall pressure drag was

reduced by 8%, from CD = 0.0088 to Co = 0.0081.
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6 CONCLUSIONS AND FUTURE DEVELOPMENTS

The development of a rapidly convergent multi-block flow solver, and its ef-

ficient implementation on parallel computers, makes the routine steady-state
analysis of complete aircraft entirely feasible. It also enables automatic aero-

dynamic design optimization, and time-resolved calculations on complex con-

figurations. The multi-bl0ck approach described in this paper has already been

extended to compute steady and time-dependent incompressible flow. Future

developments will focus on the implementation of advanced turbulence models,

as well as the implementation of design optimization techniques based on the

Reynolds Averaged Navier Stokes equations.
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Figure 6: Business Jet Configuration. Comparison between Euler and Navier-Stokes solu-

tions M -- 0.82, CL -- 0.36 - - -, Euler Cp; --, Navier-Stokes Cp.
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hover, Oc -- 8 °, Ms = 0.877.
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After 5 Design Cycles.
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l"i_ure l l: Supersottic Transp,Jrt (',onli_,ur_t.i_n. l)l'_, Minilnizatit_ll at Fixed Lift_ l_a.,_eline

soltltioxis on the left half, optitnized soluti,olts on the right half. AI -- 2.20, CI. 0.t05
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